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What's Learning

Learning is about applying learning algorithm to
training examples m, which are from the whole data
D=f(x), in order to find a ideal hypothesis g from the
hypothesis space H.
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How to define this ideal

« We want this learned geH to work well on future data.
Define £rror(h) = I(h,x ) to be the loss function, and
expirical loss E;.in(h) ,expected loss Ei.,.(h) , we want :

Etrain(g) ~ Etrue(g) ~
Etrain(h) = [l(h X y) Zﬁ(h(x) -+ y)

xemheH ‘m xem,heH

Etrue(h) = E[l(h, X, Y)]

Note : For a fixed h, train error is likely to be an
underestimate to true error.




Learning Example

Suppose we want an algorithm to distinguish among different
types of motor vehicles such as cars and tractors. And the objective
is to design a “prediction” algorithm that given a vector will
correctly predict the corresponding type of vehicle
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What we got

— The number of training sample : m
— Hypothesis space H : lots of lines
— Target:

New Data




What we got

— The number of training sample : m
— Hypothesis space H : lots of lines
— Target:

Etrain(g) ~ Etrue(g) ~ O

So what is the probability of E,,,;,(g) close
enough to E.(9) ?




Hoeffding Inequality

Let mutually independent random variables £1,..EN ,
N is a large number, and define:

So forany € > 0, we have

P(E -E[&]> 5) < exp(— 2Neg’ )

Hoeffding shows the difference between the true
probability of an event and the observation of its
independent trials




Learning Example

According to Hoeffding, for a fixed h, we have

PIE, (h)—E,,, (h)>&]<expl-2me?)

train

where m is the size of training example and it should
be a large number

How large?




How many training example will sutfice

(h)>¢]< exp(— 2mg2)

Let's say we want E;.(9) £ Ei.in(9) + € holds with the
confidence of at least 1-6

P[Etrue (h) -k

train

Then according to other formulas, we have the answer:

: . (ln‘H‘ + lnlj
2¢& o)

m >

ln|H|+lnl
o

Etrue (h) S Etrain (h) T &= Etrain (h) + \/

2m




the Upper Bound

Now we have, for a fixed h,

PIE, (h)—E,,, (h)>&]<expl-2me?)

train

As for the whole hypothesis space H

P[Etrue (hl) o E

train

< P[Etrue (hl) o E

train

(n)>e. . VE, (Ny) = Eyu(hy ) > €]
(h)>¢e]+...+P[E (h‘H‘)—E (h

true train

)> €]

|

<|H exp(— 2m52)




Learning Example

*Abviously, the upper bounds for hypothesis space H is
|H|exp(-2me2)
S0 the answer to our target:
Eirin(9) can cIosEéraé’tg%LShE%egr)ujg()) if m is large and
H is finite

Ei.in(g) can close enough to zero if H is reasonable




Infinite Hypothesis Space

« However, the line to distinguish among different
types of motor vehicles is infinite

« What measure of complexity should we use in
place of [H| ?

Vapnik-Chervonenkis Dimension




Shatter and VC dimension

« WF—PEFU, S), UB—ES | SRURNTFERIRS.

« WRHESA = U, AIE— 1 FEEA LIRS ASTFH—
ATESANSE , WFRARTLUESETES ( Shatter )

- BRIgTEHIVCYE , VC(H) , X :
VC(H) = max( |A| ), ARRILAEHI TR R KIEARES
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« U = R2 of points in the plane,
« S = the collection of all axis-parallel rectangles.
« Whenm =1 and m=2




Example

When m = 3, There are many ways to place 3 points
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When m = 4, shattered
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When m = 4, not shattered
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When any m > 4, not shattered

5 points in line : NO
Put E inside ABCD : NO
Convex Polygon(13f2) : NO




« U = R2 of points in the plane,
« S = the collection of all axis-parallel rectangles.

. VC =4




Example 2

« A set system is the set U of points in the plane, with
S linear separating hyperplanes in n dimension.

« VCH)=n +1




Example 2

« U =R2 of points in the plane,

« S = linear separating hyperplanes in 2 dimension.
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Example 2

When m = 4;

Choose AD or BC failed

Any m >4 is not shattered, VC(H) = 3




Example 2

« Known that VC(Linear) = 3 and VC(Axis-parallel
Rectangle) = 4

 To separate training example of size 4:
Eiain(Linear) > Ei.in(Rectangle)

« More likely Ein(Rectangle) = 0

So the smaller VC(H), the harder to find a
hypothesis heH , E;in(h) = 0




the Meaning of VC Dimension

 VC(H) is a measure of complexity and measures the
expressive power or flexibility of a set of functions(or
hypothesis space) by assessing how wiggly(f15/ i), 2k
[]) its members can be.

* The bigger VC(H) shows H can shatter more point.

« VC(H) is infinite, if H can shatter any n examples, then,
model is very complicated
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VC(H) and |H|

If VC(H) = k

AN

H can shatter at most k examples

/ H can separate 2k labels
|H| > 2k
\ VC(H)<log,|H|




VC Bound

« Let's review the problem left before and replace |H| with
VC(H):
* Bound on m using other complex quantities

m > 1(410g2 2 +8VC(H)log, 13)
& o &

* Bound on E using other complex quantities

ver) In—2" 41|+
VC(H) 5

E_(W<E,  (h)+&=E,  (h)+

train train




VC Bound

VC(H)(ln 2m +1j+1n4
)+ VC(H) 5

m

Etrue (h) < E (h) + &= E

train train

 So back to our target:

Etrain(g) ~ Etrue(g) ~ O

* Bound can be found on finite and infinite hypothesis
space H, E,.;, can be close enought to E;, .




Model Selection

« Known that E;.i,(9) = Eue(g), But how to select a
model g most fitting data and having a ideal
performance?

« What about E;,i,(g) = 0 in our target ?
Etrain(g) ~ Etrue(g) ~ O




Empirical Risk Minimization

To simply minimize E;,i,(g) = 0 in our target ?

Etrain(g) ~ Etrue(g) ~ O

So we need
 To minimize E,i,(9)

« To fit more train examples as possible
« A powerful H to shatter more examples
« ADbig VC(H), but a bad performance on true data

« Thus, lead overfitting




What is overfitting

* Hypothesis h overfits training data, if there is a n'
that:

Error,,(h) < Error,,(h') and
Errortrue(h) > Errortrue(h')

Which is represented by "good on training
examples and bad on test examples”




Tradeoff of VC Dimension

« Model complexity increase as VC increase.

« The bigger VC is, train error more likely close to O,
the greater the upper bound between E,,,;, and E; .

\ True error

model complexity

Error

Train Error

* . .
Ve VC dimension, dy.




Structural Risk Minimization

« SRM = ERM + f(VC, m)

« where f(VC,m) is the confidence risk function

f(VC,m) < V—C
m

« So we finally want Min( E;in(g) + f(VC,m))

VC(H)(ln 2m +1j+ln4
o+ VC(H) 5

E _(W<E,  (h)+&=E

train train




Structural Risk Minimization

Aim at choosing an h to minimize the bound on E; (h), a
trade-off between hypothesis space complexity and
empirical error Ei,(9)

Model selection by SRM corresponds to finding the model

simplest in terms of order and best in terms of empirical
error on the data




Other Model Selection Criterion

« AIC (Akaike Information Criterion)

« BIC (Bayesian Information Criterion)



AIC

« AIC (Akaike Information Criterion)

AIC = LogLikehood(data | MLE params)— ( params number)

« MLE = Maximum Likelihood Estimation

- Take into account the R-squared of model({&EHIEE)
and model complexity by measuring the number of
parameters



BIC

 BIC (Bayesian Information Criterion)

BIC = LogLikehood (data | MLE params) —

( params number)
2

logm

« MLE = Maximum Likelihood Estimation

 Take into account the R-squared of model({#&EHIS

/

&) , the size of training example and model complexity



Conclusion

« There is a ideal hypothesis g, which works well on
future data (Learnable)

« VC dimension is a measure of model complex by
shattering.
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ne bigger VC goes,
ne model more complex

ne upper bound on E, and E;. Increase

« Model selection is tradeoff between simple model
and good performance on training data
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